Ill-posedness of Kawahara equation and Kaup–Kupershmidt equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the ill-posedness of the Prandtl equation

The concern of this paper is the Cauchy problem for the Prandtl equation. This problem is known to be well-posed for analytic data [13, 10], or for data with monotonicity properties [11, 15]. We prove here that it is linearly ill-posed in Sobolev type spaces. The key of the analysis is the construction, at high tangential frequencies, of unstable quasimodes for the linearization around solution...

متن کامل

Remarks on the ill-posedness of the Prandtl equation

In the lines of the recent paper [5], we establish various ill-posedness results for the Prandtl equation. By considering perturbations of stationary shear flows, we show that for some linearizations of the Prandtl equation and some C∞ initial data, local in time C∞ solutions do not exist. At the nonlinear level, we prove that if a flow exists in the Sobolev setting, it cannot be Lipschitz cont...

متن کامل

On the Ill-posedness Result for the Bbm Equation

We prove that the initial value problem (IVP) for the BBM equation is ill-posed for data in H(R), s < 0 in the sense that the flow-map u0 7→ u(t) that associates to initial data u0 the solution u cannot be continuous at the origin from H(R) to even D′(R) at any fixed t > 0 small enough. This result is sharp.

متن کامل

Sharp ill-posedness result for the periodic Benjamin-Ono equation

We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.

متن کامل

Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case

We prove that the KdV-Burgers is globally well-posed in H−1(T) with a solution-map that is analytic fromH−1(T) to C([0, T ];H−1(T)) whereas it is ill-posed in Hs(T), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(T) to even D′(T) at any fixed t > 0 small enough. In view of the result of Kappeler and Topalov for KdV it thus appears that even if the dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2011

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2011.03.047