Ill-posedness of Kawahara equation and Kaup–Kupershmidt equation
نویسندگان
چکیده
منابع مشابه
On the ill-posedness of the Prandtl equation
The concern of this paper is the Cauchy problem for the Prandtl equation. This problem is known to be well-posed for analytic data [13, 10], or for data with monotonicity properties [11, 15]. We prove here that it is linearly ill-posed in Sobolev type spaces. The key of the analysis is the construction, at high tangential frequencies, of unstable quasimodes for the linearization around solution...
متن کاملRemarks on the ill-posedness of the Prandtl equation
In the lines of the recent paper [5], we establish various ill-posedness results for the Prandtl equation. By considering perturbations of stationary shear flows, we show that for some linearizations of the Prandtl equation and some C∞ initial data, local in time C∞ solutions do not exist. At the nonlinear level, we prove that if a flow exists in the Sobolev setting, it cannot be Lipschitz cont...
متن کاملOn the Ill-posedness Result for the Bbm Equation
We prove that the initial value problem (IVP) for the BBM equation is ill-posed for data in H(R), s < 0 in the sense that the flow-map u0 7→ u(t) that associates to initial data u0 the solution u cannot be continuous at the origin from H(R) to even D′(R) at any fixed t > 0 small enough. This result is sharp.
متن کاملSharp ill-posedness result for the periodic Benjamin-Ono equation
We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.
متن کاملSharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case
We prove that the KdV-Burgers is globally well-posed in H−1(T) with a solution-map that is analytic fromH−1(T) to C([0, T ];H−1(T)) whereas it is ill-posed in Hs(T), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(T) to even D′(T) at any fixed t > 0 small enough. In view of the result of Kappeler and Topalov for KdV it thus appears that even if the dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.03.047